# Volumetric Properties of Carbon Dioxide + Toluene at High Pressures 

Holger Pohler and Erdogan Kiran*

Department of Chemical Engineering, University of Maine, Orono, Maine 04469-5737


#### Abstract

Volumetric behavior of carbon dioxide + toluene has been investigated at (323, 348, 373, 398, and 423) K at pressures up to 70 MPa . Densities for pure components and mixtures containing ( $58,68,80$, and 88) mass \% carbon dioxide are determined as a function of pressure at each temperature. It is shown that with increasing pressure the density of carbon dioxide becomes greater than that of toluene. Mixture densities also show a density crossover at different pressures depending upon the composition. In the composition range evaluated, the excess volume of the mixtures is observed to be mostly negative. It becomes more negative with increasing temperature, but less negative with increasing pressure.


## Introduction

Volumetric behavior of the binary mixtures of carbon dioxide with conventional organic solvents at high pressures is of particular importance for the development of new, environmentally desirable supercritical fluid processing technologies. The mixture composition is an important tuning parameter which influences the suitability of a mixture as a process or processing fluid with respect to (a) the operational temperatures and pressures and (b) the process selectivity or reactivity. Carbon dioxide is especially desirable in reducing the use of undesirable sol vents. At the University of Maine, we utilize binary near critical and supercritical fluids as solvents in the formation, modification, and processing of polymeric materials (Kiran, 1994). We have already reported on the miscibility and phase separation of selected polymers and their polymerizations or extractions in binary mixtures of carbon dioxide and alkanes, or other solvents such as toluene, cyclohexane, al cohols, and acetic acid (Kiran, 1994; Kiran et al., 1993; Xiong and Kiran, 1994a,b; Kiran and Gokmenoglu, 1994, 1995; Kiran and Balkan, 1994; Kiran, 1995).

Even though there is considerable information on phase equilibria, and the data base on the critical properties of mixtures is expanding, detailed volumetric information, especially information on the densities of fluid mixtures at high pressures, appears to be essentially nonexistent. Density being an extremely important quantity in many supercritical fluid-based processes, we have initiated a program to systematically explore the volumetric properties of fluid mixtures, especially those in which carbon dioxide constitutes one of the components. We have already reported on the volumetric properties of carbon dioxide + pentane (Kiran et al., 1996) and carbon dioxide + sulfur hexafluoride (Gokmenoglu et al., 1996). We now report on the volumetric behavior of binary mixtures of carbon dioxide and toluene at pressures up to 70 MPa . Pressuredensity data are reported for the mixtures containing 0 , $58,68,80,88$, and 100 mass \% carbon dioxide at (323, 348, 373, 398, and 423) K. The excess volumes for these mixtures and their variation with composition, temperature, and pressure are also reported.

## Experimental Section

All experiments were carried out in a specially designed variable-volume view cell. The details of the system and

* To whom correspondence should be addressed. E-mail: Kiran@maine.maine.edu.
the high-pressure cell and the operational procedures with respect to loading and determination of the cell volume have been described in detail in our previous publications (Kiran et al., 1995; Gokmenoglu et al., 1996). Figure 1 is a schematic diagram of the overall system which is operable up to 70 MPa and 473 K . Briefly, the cell is loaded sequentially with each fluid from small fluid-transfer vessels (TV) while monitoring the change in weight of the transfer vessel with a sensitive balance (M ettler 6100, with $\pm 0.01 \mathrm{~g}$ accuracy). After loading, the cell is heated to a desired temperature, and the pressure is changed by applying pressure from the pressure generation line (PGN) to move a piston inside the variable-volume attachment (VVP) of the cell. The unique feature of this view cell is that its internal volume is monitored at all temperatures and pressures by precisely determining the position of the piston. This is achieved with the aid of a linear variable differential transformer (LVDT) and a position readout unit (PRU). The LVDT helps locate the position of a ferromagnetic core which is attached to an extension rod connected to the piston. At each temperature, cell volumes and hence the fluid densities corresponding to different pressures are determined. As demonstrated by comparisons with literature data in our previous publications (Kiran et al., 1996), with this system, the densities are determined with an accuracy of $\pm 1.2 \%$. The maximum internal volume of the cell is $22.43 \mathrm{~cm}^{3}$. Volume changes are determined with an accuracy of $\pm 0.0025 \mathrm{~cm}^{3}$.

Materials. Carbon dioxide was bone-dry grade with a purity of $99.8 \%$ (Airco; supplied with an eductor tube). Toluene (99.8\% purity) was obtained from Fisher Chemicals.

## Results and Discussion

Density. Densities of pure carbon dioxide and toluene and of their binary mixtures containing ( $58,68,80$, and 88) mass \% carbon dioxide have been determined at (323, $348,373,398$, and 423) K over a wide pressure range. They are shown in Table 1. At these conditions, the mixtures either are supercritical or exist as liquid mixtures. Figure 2 shows the variation of the critical temperature and pressure for toluene carbon dioxide mixtures. The figure has been generated using literature data ( Ng and Robinson, 1978). The present measurements have been mostly conducted at pressures which are higher than the critical pressures for all mixtures investigated.


Figure 1. Schematic diagram of the experimental system.


Figure 2. Critical temperature and pressure of the binary mixtures carbon dioxide (1) + toluene (2). Data are from Ng and Robinson (1978).


Figure 3. Pressure dependence of density for the binary mixture of carbon dioxide and toluene at 323 K . Compositions are in mass percent.

Figure 3 shows the densities of carbon dioxide/toluene isopleths at 323 K . The figure shows the low compressibility of pure toluene compared to pure carbon dioxide. While the density of carbon dioxide changes from about ( 0.6292 to 0.9942 ) $\mathrm{g} / \mathrm{cm}^{3}$, with a pressure change from (11.83 to 53.45 ) MPa, the density of toluene changes only


Figure 4. Pressure dependence of density for the binary mixture of carbon dioxide and toluene at 348 K . Compositions are in mass percent.


Figure 5. Pressure dependence of density for the binary mixture of carbon dioxide and toluene at 373 K . Compositions are in mass percent.
by a small amount, from ( 0.8396 to 0.8831 ) $\mathrm{g} / \mathrm{cm}^{3}$ when the pressure is changed from ( 3.42 to 64.77 ) MPa. An interesting feature of the figure is that at about 25 MPa carbon dioxide becomes more dense than toluene. The binary mixtures show intermediate behavior with density cross-

Table 1. Densities of Carbon Dioxide (1) + Toluene (2) (w = mass fraction)

| 323 K |  | 348 K |  | 373 K |  | 398 K |  | 423 K |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\rho /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | $\mathrm{p} / \mathrm{MPa}$ | $\rho /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | $\mathrm{p} / \mathrm{MPa}$ | $\rho /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | $\mathrm{p} / \mathrm{MPa}$ | $\rho /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | $\mathrm{p} / \mathrm{MPa}$ | $\rho /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | $\mathrm{p} / \mathrm{MPa}$ |
| $\mathrm{W}_{1}=1$ |  |  |  |  |  |  |  |  |  |
| 0.6292 | 11.83 | 0.6475 | 19.63 | 0.6282 | 26.05 | 0.6298 | 32.64 | 0.6281 | 38.73 |
| 0.7348 | 15.46 | 0.6932 | 22.74 | 0.6644 | 28.78 | 0.6711 | 36.40 | 0.6410 | 40.26 |
| 0.7954 | 19.40 | 0.7271 | 25.19 | 0.7087 | 32.63 | 0.7053 | 40.06 | 0.6726 | 44.03 |
| 0.8343 | 22.96 | 0.7648 | 28.61 | 0.7408 | 36.11 | 0.7346 | 43.74 | 0.7014 | 47.57 |
| 0.8659 | 26.79 | 0.8010 | 32.55 | 0.7710 | 39.82 | 0.7644 | 47.73 | 0.7293 | 51.40 |
| 0.8925 | 30.59 | 0.8270 | 36.08 | 0.7986 | 43.79 | 0.7881 | 51.41 | 0.7537 | 55.33 |
| 0.9145 | 34.45 | 0.8534 | 40.17 | 0.8232 | 47.56 | 0.8088 | 55.19 | 0.7757 | 59.16 |
| 0.9347 | 38.21 | 0.8743 | 43.74 | 0.8454 | 51.54 | 0.8289 | 59.08 | 0.7962 | 62.76 |
| 0.9595 | 41.93 | 0.8927 | 47.59 | 0.8634 | 55.13 | 0.8472 | 62.78 |  |  |
| 0.9655 | 45.94 | 0.9123 | 51.39 | 0.8808 | 59.11 |  |  |  |  |
| 0.9837 | 50.09 | 0.9284 | 55.22 | 0.8974 | 62.75 |  |  |  |  |
| 0.9942 | 53.45 | 0.9502 | 59.12 |  |  |  |  |  |  |
| $W_{1}=0.88$ |  |  |  |  |  |  |  |  |  |
| 0.7034 | 9.84 | 0.6916 | 17.53 | 0.6797 | 24.89 | 0.6707 | 31.91 | 0.6626 | 39.05 |
| 0.7635 | 12.61 | 0.7317 | 20.31 | 0.7144 | 28.10 | 0.7007 | 35.43 | 0.6900 | 42.97 |
| 0.8001 | 15.55 | 0.7620 | 23.15 | 0.7406 | 30.87 | 0.7245 | 38.80 | 0.7109 | 46.05 |
| 0.8331 | 19.14 | 0.7937 | 26.69 | 0.7718 | 34.89 | 0.7486 | 42.32 | 0.7337 | 49.93 |
| 0.8602 | 22.97 | 0.8209 | 30.54 | 0.7930 | 38.34 | 0.7705 | 46.11 | 0.7530 | 53.79 |
| 0.8838 | 26.76 | 0.8421 | 34.29 | 0.8150 | 42.19 | 0.7891 | 49.81 | 0.7715 | 57.48 |
| 0.9035 | 30.81 | 0.8639 | 38.25 | 0.8335 | 45.93 | 0.8086 | 53.59 | 0.7881 | 61.46 |
| 0.9202 | 34.66 | 0.8800 | 41.97 | 0.8518 | 49.81 | 0.8249 | 57.43 | 0.8058 | 64.45 |
| 0.9342 | 38.24 | 0.8965 | 45.86 | 0.8655 | 53.36 | 0.8396 | 61.10 |  |  |
| 0.9474 | 42.13 | 0.9122 | 50.18 | 0.8802 | 57.35 | 0.8530 | 65.01 |  |  |
| 0.9601 | 45.95 | 0.9251 | 53.93 | 0.8941 | 61.46 |  |  |  |  |
| 0.9729 | 49.90 | 0.9364 | 57.46 | 0.9066 | 64.97 |  |  |  |  |
| 0.9839 | 53.72 | 0.9479 | 61.01 |  |  |  |  |  |  |
| 0.9923 | 57.29 | 0.9586 | 64.82 |  |  |  |  |  |  |
| 1.0033 | 61.28 |  |  |  |  |  |  |  |  |
| 1.0124 | 64.86 |  |  |  |  |  |  |  |  |
| $W_{1}=0.80$ |  |  |  |  |  |  |  |  |  |
| 0.7004 | 9.38 | 0.6940 | 14.66 | 0.6834 | 22.25 | 0.6741 | 29.77 | 0.6658 | 37.02 |
| 0.7685 | 11.73 | 0.7521 | 19.32 | 0.7296 | 26.94 | 0.7112 | 34.54 | 0.6964 | 41.74 |
| 0.8113 | 15.34 | 0.7837 | 22.98 | 0.7578 | 30.78 | 0.7378 | 38.45 | 0.7227 | 46.17 |
| 0.8392 | 18.99 | 0.8106 | 27.09 | 0.7795 | 34.46 | 0.7582 | 42.23 | 0.7400 | 49.78 |
| 0.8647 | 23.13 | 0.8295 | 30.46 | 0.8010 | 38.49 | 0.7773 | 46.02 | 0.7591 | 53.96 |
| 0.8814 | 26.83 | 0.8473 | 34.37 | 0.8182 | 42.24 | 0.7944 | 50.00 | 0.7747 | 57.36 |
| 0.8978 | 30.51 | 0.8637 | 38.07 | 0.8349 | 45.96 | 0.8090 | 53.62 | 0.7887 | 61.04 |
| 0.9121 | 34.52 | 0.8780 | 42.09 | 0.8490 | 49.96 | 0.8237 | 57.37 | 0.8021 | 65.07 |
| 0.9253 | 38.76 | 0.8917 | 45.94 | 0.8616 | 53.38 | 0.8351 | 60.98 |  |  |
| 0.9367 | 42.17 | 0.9055 | 50.34 | 0.8732 | 57.37 | 0.8479 | 64.56 |  |  |
| 0.9463 | 45.94 | 0.9147 | 53.50 | 0.8843 | 61.06 |  |  |  |  |
| 0.9569 | 49.75 | 0.9234 | 57.24 | 0.8943 | 64.62 |  |  |  |  |
| 0.9644 | 53.36 | 0.9333 | 61.00 |  |  |  |  |  |  |
| 0.9730 | 57.24 | 0.9422 | 64.76 |  |  |  |  |  |  |
| 0.9813 | 61.00 |  |  |  |  |  |  |  |  |
| 0.9898 | 64.76 |  |  |  |  |  |  |  |  |
| $W_{1}=0.68$ |  |  |  |  |  |  |  |  |  |
| 0.7173 | 8.02 | 0.7174 | 11.42 | 0.7071 | 17.76 | 0.6952 | 24.70 | 0.6847 | 32.18 |
| 0.8316 | 11.55 | 0.7734 | 15.32 | 0.7326 | 20.19 | 0.7206 | 27.94 | 0.7066 | 35.42 |
| 0.8560 | 15.38 | 0.8056 | 19.55 | 0.7560 | 23.28 | 0.7408 | 31.05 | 0.7252 | 38.73 |
| 0.8757 | 19.36 | 0.8251 | 23.12 | 0.7783 | 26.78 | 0.7600 | 34.63 | 0.7448 | 42.36 |
| 0.8910 | 23.25 | 0.8428 | 26.76 | 0.7992 | 30.77 | 0.7788 | 38.28 | 0.7629 | 46.26 |
| 0.9037 | 26.89 | 0.8574 | 30.53 | 0.8172 | 34.66 | 0.7959 | 42.20 | 0.7762 | 49.75 |
| 0.9154 | 30.87 | 0.8720 | 34.61 | 0.8320 | 38.39 | 0.8109 | 46.10 | 0.7904 | 53.56 |
| 0.9255 | 34.36 | 0.8843 | 38.55 | 0.8454 | 42.19 | 0.8239 | 49.72 | 0.8055 | 57.62 |
| 0.9371 | 38.94 | 0.8952 | 42.32 | 0.8598 | 46.21 | 0.8360 | 53.78 | 0.8166 | 60.98 |
| 0.9445 | 42.06 | 0.9052 | 46.02 | 0.8702 | 50.04 | 0.8479 | 57.43 | 0.8276 | 64.65 |
| 0.9530 | 46.01 | 0.9154 | 50.08 | 0.8802 | 53.67 | 0.8599 | 61.81 |  |  |
| 0.9605 | 49.66 | 0.9249 | 53.65 | 0.8906 | 57.36 | 0.8677 | 64.82 |  |  |
| 0.9696 | 53.44 | 0.9321 | 57.31 | 0.8992 | 61.21 |  |  |  |  |
| 0.9750 | 57.23 | 0.9400 | 61.08 | 0.9089 | 64.90 |  |  |  |  |
| 0.9822 | 61.05 | 0.9485 | 64.62 |  |  |  |  |  |  |
| 0.9896 | 64.65 |  |  |  |  |  |  |  |  |
| $\mathrm{W}_{1}=0.58$ |  |  |  |  |  |  |  |  |  |
| 0.6601 | 7.86 | 0.6575 | 10.34 | 0.6539 | 13.22 | 0.6489 | 17.91 | 0.6396 | 24.42 |
| 0.8051 | 11.37 | 0.7254 | 12.55 | 0.7018 | 16.12 | 0.6749 | 20.74 | 0.6654 | 28.07 |
| 0.8298 | 14.91 | 0.7677 | 15.22 | 0.7295 | 19.19 | 0.6939 | 23.36 | 0.6838 | 30.89 |
| 0.8487 | 19.47 | 0.7900 | 19.17 | 0.7527 | 22.91 | 0.7166 | 27.04 | 0.7049 | 34.97 |
| 0.8591 | 23.12 | 0.8079 | 23.11 | 0.7711 | 26.97 | 0.7346 | 30.66 | 0.7202 | 38.63 |
| 0.8706 | 26.99 | 0.8203 | 26.71 | 0.7862 | 30.71 | 0.7506 | 34.41 | 0.7355 | 42.26 |
| 0.8807 | 30.82 | 0.8337 | 30.65 | 0.7997 | 34.22 | 0.7650 | 38.63 | 0.7489 | 46.05 |
| 0.8884 | 34.42 | 0.8434 | 34.51 | 0.8114 | 38.37 | 0.7777 | 41.97 | 0.7592 | 49.52 |
| 0.8965 | 38.59 | 0.8530 | 38.16 | 0.8226 | 42.25 | 0.7889 | 45.67 | 0.7717 | 53.37 |

Table 1 (continued)

| 323 K |  | 348 K |  | 373 K |  | 398 K |  | 423 K |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\rho /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | $\mathrm{p} / \mathrm{MPa}$ | $\rho /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | $\mathrm{p} / \mathrm{MPa}$ | $\rho /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | $\mathrm{p} / \mathrm{MPa}$ | $\rho /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | $\mathrm{p} / \mathrm{MPa}$ | $\rho /\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | $\mathrm{p} / \mathrm{MPa}$ |
| $\mathrm{W}_{1}=0.58$ |  |  |  |  |  |  |  |  |  |
| 0.9030 | 42.10 | 0.8623 | 42.35 | 0.8319 | 45.83 | 0.7994 | 49.65 | 0.7818 | 57.08 |
| 0.9106 | 45.67 | 0.8707 | 45.94 | 0.8402 | 49.83 | 0.8106 | 53.75 | 0.7927 | 61.21 |
| 0.9172 | 49.92 | 0.8772 | 49.70 | 0.8485 | 53.56 | 0.8187 | 57.15 | 0.8018 | 64.83 |
| 0.9224 | 53.24 | 0.8844 | 53.51 | 0.8563 | 57.03 | 0.8274 | 61.31 |  |  |
| 0.9296 | 57.40 | 0.8912 | 57.18 | 0.8647 | 61.01 | 0.8346 | 64.47 |  |  |
| 0.9342 | 61.16 | 0.8988 | 60.82 | 0.8717 | 64.61 |  |  |  |  |
| 0.9399 | 64.75 | 0.9049 | 64.51 |  |  |  |  |  |  |
| $\mathrm{W}_{1}=0$ |  |  |  |  |  |  |  |  |  |
| 0.8396 | 3.42 | 0.8249 | 10.73 | 0.8104 | 17.70 | 0.7982 | 25.08 | 0.7875 | 32.35 |
| 0.8438 | 8.23 | 0.8272 | 14.26 | 0.8143 | 21.44 | 0.8026 | 28.55 | 0.7902 | 35.58 |
| 0.8460 | 11.95 | 0.8294 | 16.68 | 0.8170 | 24.16 | 0.8056 | 31.58 | 0.7941 | 39.11 |
| 0.8506 | 15.75 | 0.8320 | 19.54 | 0.8207 | 26.90 | 0.8089 | 34.88 | 0.7978 | 42.05 |
| 0.8524 | 19.61 | 0.8353 | 23.53 | 0.8237 | 30.48 | 0.8111 | 38.41 | 0.8016 | 45.81 |
| 0.8552 | 23.43 | 0.8384 | 27.01 | 0.8263 | 34.51 | 0.8159 | 42.13 | 0.8040 | 49.59 |
| 0.8580 | 26.91 | 0.8412 | 30.55 | 0.8306 | 38.34 | 0.8183 | 46.11 | 0.8081 | 53.59 |
| 0.8617 | 30.87 | 0.8445 | 34.44 | 0.8339 | 42.25 | 0.8213 | 49.81 | 0.8110 | 57.18 |
| 0.8646 | 34.60 | 0.8475 | 38.38 | 0.8361 | 46.26 | 0.8250 | 53.95 | 0.8145 | 60.91 |
| 0.8660 | 38.37 | 0.8518 | 42.50 | 0.8398 | 49.65 | 0.8286 | 57.43 | 0.8174 | 64.46 |
| 0.8699 | 42.00 | 0.8532 | 45.94 | 0.8420 | 53.34 | 0.8305 | 60.83 |  |  |
| 0.8715 | 45.92 | 0.8561 | 49.71 | 0.8445 | 57.09 | 0.8333 | 64.74 |  |  |
| 0.8747 | 49.59 | 0.8597 | 53.46 | 0.8472 | 60.93 |  |  |  |  |
| 0.8763 | 53.60 | 0.8612 | 57.23 | 0.8507 | 64.58 |  |  |  |  |
| 0.8797 | 57.33 | 0.8643 | 61.39 |  |  |  |  |  |  |
| 0.8818 | 61.07 | 0.8662 | 64.55 |  |  |  |  |  |  |
| 0.8831 | 64.77 |  |  |  |  |  |  |  |  |



Figure 6. Pressure dependence of density for the binary mixture of carbon dioxide and toluene at 398 K . Compositions are in mass percent.
over occurring at different pressures. Similar general behavior is observed at 348 K (Figure 4). At this temperature, the crossover point for the densities of the purefluids shifts to 40 MPa . The mixtures display density crossover in the $40-50 \mathrm{MPa}$ range. The crossing of the pure fluid isopleths shifts above 50 MPa at 373 K (Figure 5) to 60 MPa at 398 K (Figure6). At 423 K (Figure 7) toluene once again becomes more dense than carbon dioxide over the whole experimental range. Similar density crossovers have also been observed for the carbon dioxide + pentane system (Kiran et al., 1996).

Excess Volume. The excess volumes for the mixtures were determined using the following relationship:

$$
\begin{equation*}
V^{E}=V^{\operatorname{mix}}-\left[x_{1} V_{1}+x_{2} V_{2}\right] \tag{1}
\end{equation*}
$$

where $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ are the pure component volumes and $\mathrm{x}_{1}$ and $x_{2}$ are the mass fractions of carbon di oxide and toluene. The $V^{E}$ values have been plotted as a function of mixture composition. (Even though excess volumes are normally


Figure 7. Pressure dependence of density for the binary mixture of carbon dioxide and toluene at 423 K . Compositions are in mass percent.
presented as a function of mole fraction, we are interested in our laboratory in direct information on compositions based on weight.) Figures $8-10$ show $\mathrm{VE}^{\mathrm{E}}$ data for these mixtures at three different temperatures as a function of pressure. The error in excess volume data presented in these figures is estimated to be about $11 \%$. In these figures, the compositions for which the mixtures are supercritical at the indicated pressures and the temperatures are also noted (seeFigure 2). Pressures are all above the critical pressures of the mixtures.
As shown, the excess volume is observed to be mostly negative for all temperatures and pressures. In the composition range investigated, $\mathrm{V}^{\mathrm{E}}$ becomes more negative with increasing temperature, but less negative with increasing pressure. Excess volume appears to assume a minimum value for the mixture with about 50 mass \% carbon dioxide.

As discussed in our previous publication (Kiran et al., 1996), literature data on excess volumes of mixtures at high pressures are very limited. Depending upon the system,


Figure 8. Excess volume for carbon dioxide (1) + toluene (2) at 323 K .


Figure 9. Excess volume for carbon dioxide (1) + toluene (2) at 348 K.
both negative and positive excess volumes have been reported. For example, excess volume for neon nitrogen mixtures is reported to be negative and symmetrical, but becomes less negative with increasing pressure at pressures up to 40 MPa (Battino, 1971). However, excess volume for mixtures of carbon dioxide and methane at pressures around 100 MPa are reported to be positive and symmetrical (Seitz et al., 1994). For mixtures of carbon dioxide and pentane, excess volume shows a sigmoidal shape, being negative at low concentration of carbon dioxide but positive at high carbon dioxide content (Kiran \& al., 1996). If evaluated over the full composition range, the excess volume for mixtures of carbon dioxide and toluene may also be sigmoidal. The behavior, at least at the high carbon dioxide end for which the present data have been generated, appears to be opposite to that for the carbon dioxide + pentane system.

## Conclusions

It is shown that the density of carbon dioxide becomes greater than that of toluene above a characteristic pressure at a given temperature. The binary mixtures also show density crossover at high pressures. Excess volumes are observed to be mostly negative for mixtures with carbon


Figure 10. Excess volume for carbon dioxide (1) + toluene (2) at 373 K.
dioxide contents greater than $60 \%$ by mass investigated in this study.

## Literature Cited

Battino, R. Volume changes on mixing for binary mixtures of liquids. Chem. Rev. 1971, 71, 5-42.
Gokmenoglu, Z.; Xiong, Y.; Kiran, E. Volumetric properties of carbon dioxide + sulfur hexafluoride at high pressures. J . Chem. Eng. Data. 1996, 41 (2), 354-360.
Kiran, E. Formation, modifications and processing in or with supercritical fluids. In Supercritical Fluids. Fundamentals for Applications; Kiran, E., Levelt Sengers, J . M. H., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp 541-588.
Kiran, E. Supercritical fluid processing in the pulp and paper and forest products industries. In Innovations in Supercritical Fluids- Science and Technol ogy; Hutchenson, K., F oster, N. R.; Eds., ACS Symposium Series 608; American Chemical Society: Washington, DC, 1995; pp 382-403.
Kiran, E.; Gokmenoglu, Z. Polymerization of styrene in supercritical fluids. AIChE Annual Meeting, San Francisco, 1994; Abstract 121 l .
Kiran, E.; Gokmenoglu, Z. Density modulated polymerization in supercritical fluids. AIChE Annual Meeting, Miami Beach, 1995; Abstract 73g.
Kiran, E.; Balkan, H. High-pressure extraction and delignification of red spruce with binary and ternary mixtures of acetic acid, water and supercritical carbon dioxide. J. Supercrit. Fluids 1994, 7, 7586.

Kiran, E.; Zhuang, W.; Sen, Y. L. Solubility and demixing of polyethylene in supercritical binary fluid mixtures. J. Appl. Polym. Sci. 1993, 47, 895-909.
Kiran, E.; Pöhler, H.; Xiong, Y. Volumetric properties of pentane + carbon dioxide at high pressures. J. Chem. Eng. Data 1966, 41 (2), 158-165.
$\mathrm{Ng}, \mathrm{H} .-\mathrm{J} . ;$ Robinson, D. B. Equilibrium phase properties of the toluenecarbon dioxide system. J. Chem. Eng. Data 1978, 23, 325.
Seitz, J. C.; Blencoe, J. G.; J oyce, D. B.; Bodnar, R. J. Volumetric properties of $\mathrm{CO}_{2}-\mathrm{CH}_{4}-\mathrm{N}_{2}$ fluids at $200{ }^{\circ} \mathrm{C}$ and 1000 bars. A comparison of equations of state and experimental data. Geochem. Cosmochim. Acta 1994, 58 (3), 1065-1071.
Xiong, Y.; Kiran, E. High-pressure phase behavior in polyethylene/nbutane binary and polyethylene/n-butane/carbon dioxide ternary systems. J. Appl. Polym. Sci. 1994a, 53, 1179-1190.
Xiong, Y.; Kiran, E. Prediction of high-pressure phase behavior in polyethylene/n-pentane/carbon dioxide ternary systems with the Sanchez-Lacombe model. Polymer 1994b, 35 (20), 4408-4415.

Received for review October 30, 1995. Accepted J anuary 17, 1996. ${ }^{\circ}$ Financial support for this research has in part been received from the National Science Foundation (Grant CTS P3 10232) and the USDA (Grant 9237103 7989).
J E950273N

[^0]
[^0]:    ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, March 1, 1996.

